3.4.70 \(\int \frac {\sqrt {x} (A+B x^2)}{a+b x^2} \, dx\) [370]

Optimal. Leaf size=237 \[ \frac {2 B x^{3/2}}{3 b}-\frac {(A b-a B) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}-\frac {(A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}} \]

[Out]

2/3*B*x^(3/2)/b-1/2*(A*b-B*a)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(1/4)/b^(7/4)*2^(1/2)+1/2*(A*b-B*a)*
arctan(1+b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(1/4)/b^(7/4)*2^(1/2)+1/4*(A*b-B*a)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b
^(1/4)*2^(1/2)*x^(1/2))/a^(1/4)/b^(7/4)*2^(1/2)-1/4*(A*b-B*a)*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(
1/2))/a^(1/4)/b^(7/4)*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 237, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {470, 335, 303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {(A b-a B) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \text {ArcTan}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}-\frac {(A b-a B) \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {2 B x^{3/2}}{3 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[x]*(A + B*x^2))/(a + b*x^2),x]

[Out]

(2*B*x^(3/2))/(3*b) - ((A*b - a*B)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(1/4)*b^(7/4)) +
((A*b - a*B)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(1/4)*b^(7/4)) + ((A*b - a*B)*Log[Sqrt[
a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(1/4)*b^(7/4)) - ((A*b - a*B)*Log[Sqrt[a] + Sq
rt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(1/4)*b^(7/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {\sqrt {x} \left (A+B x^2\right )}{a+b x^2} \, dx &=\frac {2 B x^{3/2}}{3 b}-\frac {\left (2 \left (-\frac {3 A b}{2}+\frac {3 a B}{2}\right )\right ) \int \frac {\sqrt {x}}{a+b x^2} \, dx}{3 b}\\ &=\frac {2 B x^{3/2}}{3 b}-\frac {\left (4 \left (-\frac {3 A b}{2}+\frac {3 a B}{2}\right )\right ) \text {Subst}\left (\int \frac {x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{3 b}\\ &=\frac {2 B x^{3/2}}{3 b}-\frac {(A b-a B) \text {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b^{3/2}}+\frac {(A b-a B) \text {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{b^{3/2}}\\ &=\frac {2 B x^{3/2}}{3 b}+\frac {(A b-a B) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b^2}+\frac {(A b-a B) \text {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 b^2}+\frac {(A b-a B) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}\\ &=\frac {2 B x^{3/2}}{3 b}+\frac {(A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}-\frac {(A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}-\frac {(A b-a B) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}\\ &=\frac {2 B x^{3/2}}{3 b}-\frac {(A b-a B) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(A b-a B) \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}-\frac {(A b-a B) \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} \sqrt [4]{a} b^{7/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.17, size = 135, normalized size = 0.57 \begin {gather*} \frac {2 B x^{3/2}}{3 b}+\frac {(-A b+a B) \tan ^{-1}\left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}}+\frac {(-A b+a B) \tanh ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )}{\sqrt {2} \sqrt [4]{a} b^{7/4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[x]*(A + B*x^2))/(a + b*x^2),x]

[Out]

(2*B*x^(3/2))/(3*b) + ((-(A*b) + a*B)*ArcTan[(Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])])/(Sqrt[2
]*a^(1/4)*b^(7/4)) + ((-(A*b) + a*B)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)])/(Sqrt[2
]*a^(1/4)*b^(7/4))

________________________________________________________________________________________

Maple [A]
time = 0.08, size = 124, normalized size = 0.52

method result size
derivativedivides \(\frac {2 B \,x^{\frac {3}{2}}}{3 b}+\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(124\)
default \(\frac {2 B \,x^{\frac {3}{2}}}{3 b}+\frac {\left (A b -B a \right ) \sqrt {2}\, \left (\ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(124\)
risch \(\frac {2 B \,x^{\frac {3}{2}}}{3 b}+\frac {\sqrt {2}\, A \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{2 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, A \ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right )}{4 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}+\frac {\sqrt {2}\, A \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{2 b \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {\sqrt {2}\, B \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right ) a}{2 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {\sqrt {2}\, B \ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {x}\, \sqrt {2}+\sqrt {\frac {a}{b}}}\right ) a}{4 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}-\frac {\sqrt {2}\, B \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right ) a}{2 b^{2} \left (\frac {a}{b}\right )^{\frac {1}{4}}}\) \(280\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)*x^(1/2)/(b*x^2+a),x,method=_RETURNVERBOSE)

[Out]

2/3*B*x^(3/2)/b+1/4*(A*b-B*a)/b^2/(a/b)^(1/4)*2^(1/2)*(ln((x-(a/b)^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2))/(x+(a/b)
^(1/4)*x^(1/2)*2^(1/2)+(a/b)^(1/2)))+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)+2*arctan(2^(1/2)/(a/b)^(1/4)*x^(1
/2)-1))

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 194, normalized size = 0.82 \begin {gather*} \frac {2 \, B x^{\frac {3}{2}}}{3 \, b} - \frac {{\left (B a - A b\right )} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{4 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

2/3*B*x^(3/2)/b - 1/4*(B*a - A*b)*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/
sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4
) - 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a^(1/4)*b^
(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b
)*x + sqrt(a))/(a^(1/4)*b^(3/4)))/b

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 834 vs. \(2 (166) = 332\).
time = 2.91, size = 834, normalized size = 3.52 \begin {gather*} \frac {4 \, B x^{\frac {3}{2}} - 12 \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} \arctan \left (\frac {\sqrt {{\left (B^{6} a^{6} - 6 \, A B^{5} a^{5} b + 15 \, A^{2} B^{4} a^{4} b^{2} - 20 \, A^{3} B^{3} a^{3} b^{3} + 15 \, A^{4} B^{2} a^{2} b^{4} - 6 \, A^{5} B a b^{5} + A^{6} b^{6}\right )} x - {\left (B^{4} a^{5} b^{3} - 4 \, A B^{3} a^{4} b^{4} + 6 \, A^{2} B^{2} a^{3} b^{5} - 4 \, A^{3} B a^{2} b^{6} + A^{4} a b^{7}\right )} \sqrt {-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}}} b^{2} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} + {\left (B^{3} a^{3} b^{2} - 3 \, A B^{2} a^{2} b^{3} + 3 \, A^{2} B a b^{4} - A^{3} b^{5}\right )} \sqrt {x} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}}}{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}\right ) + 3 \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} \log \left (a b^{5} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right ) - 3 \, b \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {1}{4}} \log \left (-a b^{5} \left (-\frac {B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a b^{7}}\right )^{\frac {3}{4}} - {\left (B^{3} a^{3} - 3 \, A B^{2} a^{2} b + 3 \, A^{2} B a b^{2} - A^{3} b^{3}\right )} \sqrt {x}\right )}{6 \, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

1/6*(4*B*x^(3/2) - 12*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1/
4)*arctan((sqrt((B^6*a^6 - 6*A*B^5*a^5*b + 15*A^2*B^4*a^4*b^2 - 20*A^3*B^3*a^3*b^3 + 15*A^4*B^2*a^2*b^4 - 6*A^
5*B*a*b^5 + A^6*b^6)*x - (B^4*a^5*b^3 - 4*A*B^3*a^4*b^4 + 6*A^2*B^2*a^3*b^5 - 4*A^3*B*a^2*b^6 + A^4*a*b^7)*sqr
t(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7)))*b^2*(-(B^4*a^4 - 4*A*B^3*
a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1/4) + (B^3*a^3*b^2 - 3*A*B^2*a^2*b^3 + 3*A^2*B
*a*b^4 - A^3*b^5)*sqrt(x)*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(
1/4))/(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)) + 3*b*(-(B^4*a^4 - 4*A*B^3*a^3*
b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1/4)*log(a*b^5*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B
^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(3/4) - (B^3*a^3 - 3*A*B^2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*sqr
t(x)) - 3*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(1/4)*log(-a*b^
5*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a*b^7))^(3/4) - (B^3*a^3 - 3*A*B^
2*a^2*b + 3*A^2*B*a*b^2 - A^3*b^3)*sqrt(x)))/b

________________________________________________________________________________________

Sympy [A]
time = 2.25, size = 303, normalized size = 1.28 \begin {gather*} \begin {cases} \tilde {\infty } \left (- \frac {2 A}{\sqrt {x}} + \frac {2 B x^{\frac {3}{2}}}{3}\right ) & \text {for}\: a = 0 \wedge b = 0 \\\frac {- \frac {2 A}{\sqrt {x}} + \frac {2 B x^{\frac {3}{2}}}{3}}{b} & \text {for}\: a = 0 \\\frac {\frac {2 A x^{\frac {3}{2}}}{3} + \frac {2 B x^{\frac {7}{2}}}{7}}{a} & \text {for}\: b = 0 \\\frac {2 A \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b \sqrt [4]{- \frac {a}{b}}} - \frac {A \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 a} + \frac {A \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 a} + \frac {A \left (- \frac {a}{b}\right )^{\frac {3}{4}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{a} - \frac {2 B a \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b^{2} \sqrt [4]{- \frac {a}{b}}} + \frac {2 B x^{\frac {3}{2}}}{3 b} + \frac {B \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} - \sqrt [4]{- \frac {a}{b}} \right )}}{2 b} - \frac {B \left (- \frac {a}{b}\right )^{\frac {3}{4}} \log {\left (\sqrt {x} + \sqrt [4]{- \frac {a}{b}} \right )}}{2 b} - \frac {B \left (- \frac {a}{b}\right )^{\frac {3}{4}} \operatorname {atan}{\left (\frac {\sqrt {x}}{\sqrt [4]{- \frac {a}{b}}} \right )}}{b} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)*x**(1/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo*(-2*A/sqrt(x) + 2*B*x**(3/2)/3), Eq(a, 0) & Eq(b, 0)), ((-2*A/sqrt(x) + 2*B*x**(3/2)/3)/b, Eq(a
, 0)), ((2*A*x**(3/2)/3 + 2*B*x**(7/2)/7)/a, Eq(b, 0)), (2*A*atan(sqrt(x)/(-a/b)**(1/4))/(b*(-a/b)**(1/4)) - A
*(-a/b)**(3/4)*log(sqrt(x) - (-a/b)**(1/4))/(2*a) + A*(-a/b)**(3/4)*log(sqrt(x) + (-a/b)**(1/4))/(2*a) + A*(-a
/b)**(3/4)*atan(sqrt(x)/(-a/b)**(1/4))/a - 2*B*a*atan(sqrt(x)/(-a/b)**(1/4))/(b**2*(-a/b)**(1/4)) + 2*B*x**(3/
2)/(3*b) + B*(-a/b)**(3/4)*log(sqrt(x) - (-a/b)**(1/4))/(2*b) - B*(-a/b)**(3/4)*log(sqrt(x) + (-a/b)**(1/4))/(
2*b) - B*(-a/b)**(3/4)*atan(sqrt(x)/(-a/b)**(1/4))/b, True))

________________________________________________________________________________________

Giac [A]
time = 1.17, size = 251, normalized size = 1.06 \begin {gather*} \frac {2 \, B x^{\frac {3}{2}}}{3 \, b} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{4}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a b^{4}} + \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{4}} - \frac {\sqrt {2} {\left (\left (a b^{3}\right )^{\frac {3}{4}} B a - \left (a b^{3}\right )^{\frac {3}{4}} A b\right )} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a b^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)*x^(1/2)/(b*x^2+a),x, algorithm="giac")

[Out]

2/3*B*x^(3/2)/b - 1/2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4)
+ 2*sqrt(x))/(a/b)^(1/4))/(a*b^4) - 1/2*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*arctan(-1/2*sqrt(2)*(s
qrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a*b^4) + 1/4*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*log
(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^4) - 1/4*sqrt(2)*((a*b^3)^(3/4)*B*a - (a*b^3)^(3/4)*A*b)*lo
g(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^4)

________________________________________________________________________________________

Mupad [B]
time = 0.08, size = 71, normalized size = 0.30 \begin {gather*} \frac {2\,B\,x^{3/2}}{3\,b}+\frac {\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (A\,b-B\,a\right )}{{\left (-a\right )}^{1/4}\,b^{7/4}}-\frac {\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {x}}{{\left (-a\right )}^{1/4}}\right )\,\left (A\,b-B\,a\right )}{{\left (-a\right )}^{1/4}\,b^{7/4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^(1/2)*(A + B*x^2))/(a + b*x^2),x)

[Out]

(2*B*x^(3/2))/(3*b) + (atan((b^(1/4)*x^(1/2))/(-a)^(1/4))*(A*b - B*a))/((-a)^(1/4)*b^(7/4)) - (atanh((b^(1/4)*
x^(1/2))/(-a)^(1/4))*(A*b - B*a))/((-a)^(1/4)*b^(7/4))

________________________________________________________________________________________